6.6.1 Ridge Regression¶
n_lambdas = 100
lambdas = np.logspace(5, -2, n_lambdas)
alphas = lambdas/2
coefs = []
scores = []
for alpha in alphas:
ridge = Ridge(alpha=alpha)
ridge.fit(X_train_scaled, y_train)
coefs.append(ridge.coef_)
scores.append(mean_squared_error(y_test, ridge.predict(X_test_scaled)))
coefs = np.array(coefs)[:,0,:]
scores = np.array(scores)

Intercept 535.925882
Assists 6.256680
AtBat 4.230942
CAtBat 25.453157
CHits 42.138824
CHmRun 37.083594
CRBI 44.617907
CRuns 42.728298
CWalks 7.394743
Errors -12.112109
Hits 45.839927
HmRun 1.061817
PutOuts 53.824576
RBI 22.566189
Runs 28.448012
Walks 39.297081
Years 0.467366
Division_W -46.095585
League_N 13.701139
NewLeague_N 3.533970
dtype: float64